The $z=0$ plane is the boundary between two materials: the region of space with $z>0$ is vacuum, the region with $z<0$ has $\epsilon=4 \epsilon_{0}$ and $\mu=1000 \mu_{0}$. The boundary carries a surface charge density of $\sigma_{f}=8.85 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2}$ and a surface current (flowing in the x direction) of $j_{f}=10^{3} \mathrm{~A} / \mathrm{m}$. On the vacuum side of the boundary $\overrightarrow{\mathbf{E}}=10^{3} \hat{\mathbf{j}}+10^{4} \hat{\mathbf{k}} \mathrm{~V} / \mathrm{m}$, and $\overrightarrow{\mathbf{B}}=-10^{-4} \hat{\mathbf{j}}+10^{-5} \hat{\mathbf{k}}$ T. Start by making a sketch showing the directions of the $\overrightarrow{\mathbf{E}}$ (on both sides) that would result from σ_{f} in a vacuum. Show on your sketch the direction you are taking for the boundary's normal. Make a sketch showing the direction of $\overrightarrow{\mathbf{B}}$ (on both sides) that would result from $\overrightarrow{\mathbf{j}}_{f}$ in a vacuum. Show on your sketch the direction you are taking for the boundary's tangent. Now find $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{B}}$ inside the material. $\left(\epsilon_{0}=8.85 \times 10^{-12} \quad \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)\right.$ $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)$

