The z = 0 plane is the boundary between two materials: the region of space with z > 0 is vacuum, the region with z < 0 has $\epsilon = 4\epsilon_0$ and $\mu = 1000\mu_0$. The boundary carries a surface charge density of $\sigma_f = 8.85 \times 10^{-8} \text{ C/m}^2$ and a surface current (flowing in the x direction) of $j_f = 10^3 \text{ A/m}$. On the vacuum side of the boundary $\vec{\mathbf{E}} = 10^3 \hat{\mathbf{j}} + 10^4 \hat{\mathbf{k}} \text{ V/m}$, and $\vec{\mathbf{B}} = -10^{-4} \hat{\mathbf{j}} + 10^{-5} \hat{\mathbf{k}}$ T. Start by making a sketch showing the directions of the $\vec{\mathbf{E}}$ (on both sides) that would result from σ_f in a vacuum. Show on your sketch the direction you are taking for the boundary's normal. Make a sketch showing the direction of $\vec{\mathbf{B}}$ (on both sides) that would result from $\vec{\mathbf{j}}_f$ in a vacuum. Show on your sketch the direction you are taking for the boundary's tangent. Now find $\vec{\mathbf{E}}$ and $\vec{\mathbf{B}}$ inside the material. ($\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$)

