Physics 339 Euler Angles & Free Precession November 2014

As described in the textbook, Euler Angles are a way to specify the configuration of a 3d
object. Starting from a fixed configuration the desired configuration is obtained by a three
step process:

1. rotation about the z axis by an angle ¢
2. rotation about the z’ axis® (i.e., the rotated z axis) by an angle

3. rotation about the z” axis (i.e., the doubly rotated z axis which, in the end, is the
body axis 3) by an angle v

[ strongly recommend looking at the Wiki visualizations (Euler.gif, author Juansempere;
also copied to the class web site) to appreciate these rotations. I hope it is clear that almost
certainly the object did not achieve its configuration by exactly these three rotations just as
it’s unlikely that an object reached a particular position by successive motions in the x, y
and z directions. We are recording configuration not history.

The body-fixed frame (123) with principal axes aligned with the frame is most convenient
for calculation; but we often need to know what a body-fixed vector looks like in the inertial
frame (zyz). We define matrices to reverse the above three steps:

cos(¢) —sin(¢) 0
My = | sin(@) cos(d) 0 1)
0 0 1
1 0 0
My, = 0 cos(f) —sin(0) (2)
0 sin(f) cos(d)
cos(y)) —sin(¢) 0
My = | sin(¢)  cos(y) 0 (3)
0 0 1
where:
Y :M(i)M@Mw To (4)

Note: To make the reverse transformation (i.e., (z,y, z) — (z1, T2, x3)) you would apply the
inverse matrices in the reverse order to (x,y, z). The inverse matrices are easily generated
by negating the angle (e.g., 8 — —6) or taking the matrix transpose.

We begin by finding the relation between ¢, 6, 1) and w (in the body-fixed frame).

IThis is the convention of Goldstein’s Classical Mechanics and Wiki; our textbook makes this second
rotation about the 3’ axis with the warning that it is not standard. I'm going here with the standard



0 6 0
w = 0 ) +M L0 | +MyIMH| O (5)
(2 0 ¢

— (dsin(w)sin0) + f cos(w). deos()sin

—

8) — Osin(1h), cos(d) + ¢) (6)

Given w in the body-fixed frame it’s easy (for Mathematica) to calculate the kinetic energy:

1 i 0 0

T = 3 w-| 0 0 | w (7)
0 0 I3

= % I <¢2 sin?(6) + 92> + % I3 (gb cos(f) + @D)z (8)

The problem at hand is free precession...no external forces or potential energy; the La-
grangian is just the kinetic energy 7. Notice that ¢ and 1 are cyclic (a.k.a., ignorable)
coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:

po = 5o =1 (deos(t) + ) )
Po = g—z = I3 cos(h) <¢ cos(f) + @D) + 1) sin®(0) = py cos(f) + I, ¢sin®(F)  (10)

Comparing to Eq. (6), see that p, = L3 (i.e., the angular momentum in the body-fixed =
direction); at the end of this document we discovery py = L, (i.e., the angular momentum in
the inertial frame z direction). Using these (constant) momenta we can rewrite the kinetic
energy much as in a Hamiltonian (but we will leave 6 alone):

1 . (ps — Py cos(@))2 p?p 1 .
T==-106° L= 6+V(
2 T o s (0) o1, 20 (6)

This expression now just involves constants and 6 and 9; furthermore it is itself a constant.
The usual logic of 1d conservation of energy applies to 6: turning points, equilibrium points,
etc. In particular the minimum of V'(#) must be an equilibrium point where 0 = 0. Working
in terms of ¢ = cos 6 note:

_ 2
V(e) x (po = pue)” + constant

1—¢?

and V' = 0 has two solutions: ¢ = py/py and ¢ = py/py The first solution results in $=0in

addition to # = 0. Applying those results to w see that w (and hence L) are entirely along

the body-fixed 3 axis. This is an object spinning in space with no additional motion. The

l;ine?ic energy is simply: p7,/(2/3)—the kinetic energy of rotation just about the body-fixed
axis.

The second solution is more interesting. Using the constant values of py, pg,cos 6 find the
values of ¢ and :



Solve [{Pphi==Ppsi Ppsi/Pphi + dphi I1 (1- (Ppsi/Pphi)"2),
Ppsi== I3 (dpsi + dphi (Ppsi/Pphi))},{dpsi,dphi}]

(I1 - I3) Ppsi Pphi

Out[20]= {{dpsi -> -————-—--—--—- , dphi -> ----}}
I1 I3 I1

Thus a free body moves with

0 = 0 (11)
. ]3&)3
= t = 12
¢ %o I, cos 8, (12)
;-1 . I3 —1T
¢ = —COSQ() 3 1¢0t:— 3 1W3t (13)
I3 I

solves the equations of motion. Note that (6, ¢) define the direction of the body-fixed 3 axis;
evidently it is inclined (at 6p) and rotating at rate ¢g. In the body frame,

we (DSl gy Pesnbo o Pe (14)
I I I

i.e., wy has a constant value of p,/I3; while w, is rotating at rate ¢ and has constant
magnitude pg sin 6y /1.

If we transform L from the body-fixed frame back into the inertial frame and substitute in

the now know values for w,é and 6 = 0.

mphi.mtheta.mpsi.L

Simplify [%]

% /. {dphi->Pphi/I1, dpsi->Cos[theta] (I1/I3-1)Pphi/I1,dtheta->0}
Simplify [%]

Out[24]= {0, O, Pphi}

We conclude that this solution has L in the inertial frame aligned with the z axis.

As stated above the fact that L, = py is true in general:
mphi.mtheta.mpsi.L
Collect[%[[3]1],{I1,13},Simplify]

2
Out [28]= I3 Cos[theta] (dpsi + dphi Cos[thetal]) + dphi I1 Sin[thetal]

where you'll notice this result is exactly p



